aymara_ai.types.eval#

Attributes#

Classes#

Eval

!!! abstract "Usage Documentation"

Module Contents#

aymara_ai.types.eval.GroundTruth: typing_extensions.TypeAlias#
class aymara_ai.types.eval.Eval(/, **data)[source]#

Bases: aymara_ai._models.BaseModel

!!! abstract “Usage Documentation”

[Models](../concepts/models.md)

A base class for creating Pydantic models.

Parameters:

data (Any)

__class_vars__#

The names of the class variables defined on the model.

__private_attributes__#

Metadata about the private attributes of the model.

__signature__#

The synthesized __init__ [Signature][inspect.Signature] of the model.

__pydantic_complete__#

Whether model building is completed, or if there are still undefined fields.

__pydantic_core_schema__#

The core schema of the model.

__pydantic_custom_init__#

Whether the model has a custom __init__ function.

__pydantic_decorators__#

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_generic_metadata__#

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

__pydantic_parent_namespace__#

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__#

The name of the post-init method for the model, if defined.

__pydantic_root_model__#

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__#

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__#

The pydantic-core SchemaValidator used to validate instances of the model.

__pydantic_fields__#

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects.

__pydantic_computed_fields__#

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_extra__#

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to ‘allow’.

__pydantic_fields_set__#

The names of fields explicitly set during instantiation.

__pydantic_private__#

Values of private attributes set on the model instance.

ai_description: str#

Description of the AI under evaluation.

eval_type: str#

Type of the eval (safety, accuracy, etc.)

ai_instructions: str | None = None#

Instructions the AI should follow.

created_at: datetime.datetime | None = None#

Timestamp when the eval was created.

eval_instructions: str | None = None#

Additional instructions for the eval, if any.

eval_uuid: str | None = None#

Unique identifier for the evaluation.

ground_truth: GroundTruth | None = None#

Ground truth data or reference file, if any.

is_jailbreak: bool | None = None#

Indicates if the eval is a jailbreak test.

is_sandbox: bool | None = None#

Indicates if the eval results are sandboxed.

language: str | None = None#

“en”).

Type:

Language code for the eval (default

modality: aymara_ai.types.shared.content_type.ContentType | None = None#

Content type for AI interactions.

name: str | None = None#

Name of the evaluation.

num_prompts: int | None = None#

50).

Type:

Number of prompts/questions in the eval (default

prompt_examples: List[aymara_ai.types.prompt_example.PromptExample] | None = None#

List of example prompts for the eval.

status: aymara_ai.types.shared.status.Status | None = None#

Resource status.

updated_at: datetime.datetime | None = None#

Timestamp when the eval was last updated.

workspace_uuid: str | None = None#

UUID of the associated workspace, if any.